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NONPARAMETRIC LIFE TEST SAMPLIlf} PLARB 

1.  Introduction 

Sampling plans for truncated life testa baaed on several parametric 

families of distribution functions have been proposed by Sobel and 

Tischendorf (1959), Gupta and Groll (196l) and Gupta (1962*). Thus, 

we have the problem of which family to choose; i.e., exponential, 

normal, lognormal, gamna, etc.  In many cases it is assumed that certain 

nuisance parameters are known.  Unless considerable prior Infomatlon is 

available, the choice will necessarily be sonewhat arbitrary. We can 

circumvent this problem by considering a class of distributions restricted 

only by certain Intuitive considerations. If the items in question wear 

out with age, then it is reasonable to assume that the failure rate 

function is nondecreasing. For other items such as solid state electronic 

devices. It seems reasonable to assume that the failure rate function 

Is nonincreaslng. By using sharp bounds on such distributions, we 

can obtain sampling plans which, although more conservative than the 

parametric plans, offer greater protection since they are valid for a 

much larger family of distributions. 

It has been suggested by Zelen and Dannemi Her (1959) that sampling 

plans should be written in terms of percentiles.  Such plans were presented 

by Gupta and Groll (196l) and Gupta (196ßa)for the gaona, normal and log- 

normal distributions. We present plans based on percentiles under the 

increasing (decreesing) failure rate assumption as well as plans based 

on the mean life.  A partial discussion of these plans was also pre- 

sented by Gupta (1962b). 



2.    Propertlea of Increasing (Decreasing) Failure Rate Distributiona. 

Let    X   be a random variable with distribution    F    such that 

F(x)  = 0    for    x < 0  .     If    F    has density    f    then    r(t) = 

f(t)/[l - F(t)]    is known as the failure rate function.     Note that 

r(t)  ■ - öT loß [1 - F(t)]    when a density exists.     For thia reason, 

we say that    F    is    IFR (DFR)  for increasing  (decreasing)  failure 

rate  if    log  [1 - F(t)]     is concave where finite  (convex on [0  , OB)). 

These distributions have been studied by Barlow,  Marshall,  and Proschan 

(1963) and Barlcv and Marshall  (1964).    For convenience we sunriarize 

some of the fundamental properties of these distributions. 

An    IFR (DFR)    distribution rjay have at most one point of dis- 

continuity;  namely,  at the end of itß right (left)  hand interval of 

support.     The continuous part of an    IFR  (DFR) distribution is 

absolutely continuous.     3ums of independent IFR random vmriatles theniielves   have 

UR distributions.    This is not true for EFR random variables.     If 

F    ie c mixture of    EFR     ^strlbutions,  then it follows that    F    is DFR. 

Many of th<" properties of the  IFR (DFR) family follcv from comparison 

with the exponential distribution.     This is no*, surprising since it is 

the boundary distribution between the two classes.     If    U. < LL < ...   U 
1 ■* 2 •*     n 

are the order statistics from an IFR (EFR) distribution F with mean 
n 

pu.  then, ElU. ] 2 H. while E[U ] ^ h 2 ± 
^ 1 (^)~ n (^) 1 1 k 

To obtain sampling plans based on percentiles we use the fact 

that  [1 - F(t)] '   is decreasing (increasing) in t when F is 

EFR (DFR).  Let p.  denote the r   moment of F .  Tu obtair, sampling 

planf based on bounds on moments we use the inequalities fnr IFR dis- 

tributions.  Ncv we describe the relevant inequalities. 
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1/r,   , , 1/r T exp ( - t/X^1) , t 1 ^ 

(2.1)    1 - F(t) ^ < (r ^ 1) 

(2.2)    1 - F(t) ^ < 
F1 t ^ .r

i/r 

(r > 0) 

exp [ -vt]     , t > M., 
1/r 

where w uniquely satlBfles 

r - 1    - wx. u   • r /    x e dx 
r w n 

and 

\ - nr/r(r ♦ 1) 

th If    F    is    EFR, with    r        mcnent    u    , then 

(2.3) 1  - F(t) ^     < 

exp   [  - t/>yr]   , t ^ r^/r 

r    -r re      ^ 

r(r > l)tX 

, t * rf 

th From these bounds we  can obtain the following bound on the    q 

quantile    ^      in terns of    pL     assuming    F    is  UR.     If    q ^ 1  - e'     t 

then 
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-1 
it 'l ~ 1 - • 

rrc:. the tact tbat ~/r ia 4ecreaaing (increuina) in r vben 

r ia l!'R (m'R) we aee tbat the coefficient of variation a/~ ~ 1 • 
(~) 

'lbe dieuity and the failure rate are bounded at the origin tra. abOYe 

in tezwa of -.en s aa follows: 

~ ~ 
t(O ) ~ i -1 J-1 

~i+J-1 
i, J- 1, 2, •.• 

vben r is IFR. 

Boun4a on 4enaities and failure rates were obtained by Barlow 

aDd Mt.raball (1964] . It P 1a l!'R and r ~ l tben 

vben a 

, 

o , t ~ ~;/r 
r(t-) ~ { 1/r 

a , t > ~ r 

J
t r - l -ax aatistiea ~ • r x e dx • 

r 0 

It P ia IrR v1 th denai ty t , tben 
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(te/ KV l/r 

f(t') ^ < x;17^"^^ 'r   ,   >yr 11 ^ (r + i)^:/r 

C^)"1.^^)       ,       t ^(r * l)xj/r 

Finally, ve mention that maxixnun likelihood ertinates of IFR (EFR) 

distributions have been obtained by Grenander (1956) and Marshall and 

Proschan (1964). 

-5- 



3«     Nonpartuaetric  Sampling Flans 

Let    0    denote a parameter defined by a life  distribution    F  . 

th For example,    Q    might denote the mean Mfe or the 90      percentlle. 

We would like to establish that,  say    ö > W x   where    ö/v    Is some 

specified value.     A comnon practice    In life testing Is to truncate 

the experiment at a preasslgned time,  say    t  , and note the number of 

failures  (assuming that a failure Is well-defined).     One object  of these 

experiments  is to set a confidence  (lower)  liMt on the raep.n (quant lie) life of the 

units.     If it is desired to establish a mean (quantlie) life, with a given proba- 
« 

bility of at least    P      and if the number  of faiLui-es  in the  fixed time 

does not exceed a given number    c   ,  then the experimenter would like to 

know the minimum sample size necessary to achieve his objective.     In 

following these sampling plans and the associated decision rude  the 

probability of rejecting a lot having a parameter    ^ ^ ^ ,    Is at  Itaot 

equal to    P Alternatively,  the consumer's risk in adopting the sampling 
« 

plan    (n  ,   c  ,  t  ,  0   )    does not exceed    1 - P      whatever    Ö    may be. 

Mathematically,  given a number    P    (U ^ P    ^ 1)   ,  a time    t    and a value 

Ö      of    Ö    and an acceptance number    c  , we want to find the smallest 

positive  integer    n    so that if the observed number of failures   in time 
« 

t    does not exceed    c    we  can assert with confidence probability    P 

that    w £ W    . 

It should be pointed out that these  life tests  can be terrain.ted 

prior to the time    t    with rejection as  the result.     In fact,   the ter- 

mination of the experiment can take place at the smaller of the  two 

/ \St 
times t , t, , v where t,  , .  is the time to the (c + 1)   failure. 

(c+1)        (c+Ij 

Also, the associated decision rule leads to an acceptance only at the 



end of time    t    and only if    t,       v > t .    Hence, 

L(p) « P{Acceptance)   » P^t.     i \ > t) 

I '?) Pl (1 - p) 

i-0 

where p » F(t;0) . 

If p is a decreasing function of Ö which is true, for Instance, 

If the density f(t;Ö) Is TP (Totally positive of order 2) in t and 

ö , then F(t;0) ^ F( t;©0) <—> « ^ ©Q •  ^ P0 - F(t;00) , then it 

is clear from the theory of confidence Intervals that the snallest 

to satisfy 

c 

1-0 

is such that In adopting the above sampling plans vlth the associated 

« 
decision rule, we can assert with probability P  that Ö > e0 provided 

VD > * • 
It should be noted that the above discussion aasumes a knowledge 

of F(t;0) . New, we consider the case where F(t;0) is not explicitly 

assumed; it is only assumed that we have bounds on F(t;0) . 

Suppose that p - F(t;e) ^ b(t;0) for t ^ 0 where b(t;0) is 

a known function. Suppose further that b(t;0) is decreasing in 0 . 

Since L(p) is a decreasing function of p , we have 
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(5-3)        L(F(t;©)) ^ L(b(t;ö)) ^ L(b(t;ö )) 
0' 

for Ö ^ ©^ •  Hence the seunpllng plans of the above type are obtained 

by choosing the Bmaileet positive Integer n satisfying 

i!>.^) L(b(t;ö0)) 1 1 - P# 

where    c  , Ö      and    t    are fixed 

Fron (3.5) and  (3A)   It foilows that  If the  number of failures 

during tlae    t    is less than or equal to    c   ,  then we can make the 
* 

confidence statement that    Ö ^ Ö     with confidence probability    P 

Note that If    b(t;ö)     Is a sharp bound on    F(t;e)  ,  then it  Is 

nondecreaslng In    t    since    F{t;ö)    is nondecreaslng in    t  .     If    0 

is the mean,  then    b(t;0)  = b(t/d;l)    since the mean is a scale parameter 

for positive randcn variables and   b(t;d)     Is decreasing in    Ö  . 

Now we give a few examples where the bound    b(t;ö)    is known. 

Example 1.     (Markov's  Inequality).     Let    Ö    denote the mean.    Then 

F(t;e) 2 Mt;©) - \ 
L 1 - o/t     , t 

Ü , t < Ö 

Is true for nonnegative reuidom variables.     Clearly,    b(t;ö)    is de- 

creasing In    0 .     A sampling plan based on Markov's  inequality would 

afford protection over the  class of all distributions on the positive 

axis.     However,  the bound is quite wide. 

-Ö- 



Exaaple 2.     (Uniaodal denalty) 

If the density    f    is uniaodal with unkncvn mode and first moaent 

d    and If    F(0-^) . 0 ,  then fron Barlow and Marshall  (1965), ve have 

20 F(t;0) 2 t(t;0) =    <    2  - ^ 

-äf 

O^t ^© 

»i^^ 

^f 
Clearly,    b(t;0)    is decreasing in    0    and the bound is a slight 

ijnprovement over Sxaaple 1. 

ELtflaple 3.     (PF    density). 

If    log f(t;ö)    is concave vh«re    f(t;d) > 0 , then    f    is called 

a    PF^PÖlya Frequency of Order 2) density.    Most of the ccmsonly used 

densities have this property.     If    f    has Bear    0 ,  then 

F(t;0) ^ b(t;ö) - i 
L 1 

1     t^e 

sup (1 - e"bt)/(l - e'^")  , t^y , 
tr£t 

-jT'xbe-^dx/U - ••**)  . where    b    is  detenained by    0 

The above bound is tabulated in a paper by Barlow and Marshall (1963). 

A sampling plan based on this bound would afford less protection than 

the  iFR sampling plane since    f    PF      implies that    F    is  IFF but not 

conversely. 

-9- 



Saaplln^ Plans  for the  jjp and DFR Distributions 

Now we discuss  the  ierivatiun of  sajnpiin^ plans  for the  IFR and 

DFR distributions  for the following two cases: 

IFR DiBtributlone 

Case  (i)    8 ■ u 
r 

In this case, from {2.2),  we have 

^       .  t <, ^^r 

where    w    uniquely satisfies 

t      . 
/       \ r-1  -wx, 
(5.b) u.    = r  ;     x      e      dx 

r J J 

Clearly    b(t;ii   i     is  a decreasing  function  of    [x    .     Hence  the  required 

n    tu  insure    ^     > u^     is given by the   smallest positive   integer which 

satisfies 

(3.7) )       j     ^i-.ur   r[l  -  b(t;^;]        S 1 - p    ■ 

It should be noted that the solution of  (3-7) depends  on the  fact that 

r        0 
t    > p.     .     Of special  importance  is  the   case where    r =   1   .      In  this 

case  (3-fe)  reduces   to 

-wt 
5.Ö) p. w .  1  - e 



Hence,   usln^  (3-0)  to solve  for    w    and then using  (3-7) with 

b(t,p.  ) ■ b(t/p.  ,1) «  1  - e ,   seunpllng pian« to Insure a specified 

mean life  have been  c jmputed and are given In Table 1.     This table 

also gives  the actual confidence level attained. 

Case  (11)    ^ « C    » tbe    q        percentlle. 

In this  case 

o ,     t < c 
3.9)      hit,:)-] vc 

q ll  -   (1  -  q)       q       ,       t^C 

<! 

which Is again decreasing In    ^      and clearly depends only on    q    and 

the ratio    t/^ Hence,   to Insure a specified   ^uantlle life    ^    , 

ve substitute from (3-9)  the value of   b(t;([   )    In the general equation 

(3.uj  and solve for the smallest    n  .    Table II at the end of this 

paper gives minimum sample sizes for the life testing situation where 

t > wJ 

DFR Distributions 

Case   (i )    Ö ■ u, r 

In this  case,  letting    >    ■ u/r(r ••> 1)   , we have 

-t/xi^r .   .    .1/r e    ' T .      t < rX ' 

(3.10) b(t;u   ) - -j 

< rX ' 
■^     r 

(et)'4      ,      t^r^ 
» 

o 1/r 
and one  can  construct sampling plans for the cases where    t ^ r  (X   ) 

o1" 
and t ^ r(X )  . Fur the special case r • 1 , and t < ^ , it is 

■11- 



easy to  check  that  the  sampling  plane  based on  the  Lounds   in  (5.1J) 

reduce  to  the  sampling pianp   for  the  negative exponential with 

. o       o 
A    =  n    =  W     .     These  tables  have  already been given  by  Sobel and 

Tischendorf   \ij'jj>)  for    t < > / =  u,    , 

Case  (11)    w =  C     • 

In  this   cat:«.- the bound Is 

(5.11)      b(t,r ) = i 

1  -   (1   -  q)       q       ,       t^Cq 

To u«e trie jpurvntrlviJU^^ound, we require    t ^ ^     .     The  sampling plans 

are  obtained as   In  case   (11)  of     IFR distributions  discussed above. 

Table  III  at   the end of  this  paper gives  these  sampling plans  for 

A = t/cü < i . 

OC  Fxtnctlon and the Producer's  Risk 

The  UC   function represents  the  probability  of acceptance as a 

fun^t.on  of    w   .     The  sampling plans and the decision rale  guarantee 

# 
that this probability is  less  than or equal to    1  -  P       for all    w ^ w 

Suppose  there exists a function    B(t;^)    sucn that    F(t;W) ^ B(t;0) 

for all     t    and all    ^   ,   tnen we  have 

(.5.12) P{Acceptance)  <> L(B(t;©))   . 

In  order   t     insure  that  the  producer's  risk will  not  exceed a 

number    a  (0 < a < 1),  whenever     ** ^ *,   »   üne  needs  tu  satisfy the 

-12- 



Inequality 

(%13)        L(B(t,y)) ^ LiBitiid^) ^ 1 - Q 

which will be satisfied If    B(t;0)    Is decreaeln« In   Ö .    One n»y 

use  the Inequality (3.13)  to determine    c    euch that for fixed    Ö    , 

Ö      and    P    (  the sampling plan and the acceptance rule will insure 

that the producer's risk will not exceed   a  .     Alternatively for 

* 
fixed    n , t , Ö    ,  c    and    P    ,  one nay want to know the minimum 

value    ö      of    Q    such that for all Ö > d        the probability of 

acceptance    > 1  - Q . 

Now we describe the evaluation of the OC  function for the IFR 

and LFR distributions. 

IFR Distributions 

Case  (1)    Ö - ^ 

-V(> )1/r ^ s    Vr 

. t^y 
i%lk) B(t;u   )  - j 

^      1 

1        r 
Thus,   for    p.   > u.    ^ t     ,  we have 

(3.15) L(F(t.ur)) ^ L(B(t;ur)) ^ L(B(t;^)) 

which gives a lower bound on the OC function.     "Rila bound is graphed 

below. 

-13- 
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Case   (1i )     w =  C 

In  tills  case 

i 5.1b) Bl t;C   '  =   i 

I   -   (1 ^ ^ c. 

.   x zz, 

and the  1 .ver and upper bounds  can be obtained simiiarly by using 

b(t;f   )     and    B(t;£   )     in  the  appropriate  intervals. 
q q 

Finally,   it should be  noted that sampling plans which protect 

the  producer  can be  constructed  for  test time  less   than  the goal 

us. ng  the  bound    B(t;W)     in  the   LKR   :ase. 

It   is   clear fr^'m the b^ijnds   uii OC  functious  f  r   the   UR   ;ase 

that we  have  to test  beyonu  the mean  'quantiie)     life  goal t    protect 

the  c ^nsumer whereas we  car-  protect  the producer by   testing fur a 

time  less   than the mean  (quantiie)   life goal. 

DFR Distributions 

Case   (i )     w = u 
r 

In  this  case  there  is   no  nontrivial l^ver bound  for  the UC 

-14- 
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function    L    since  there is no nontrlvlal upper bound on    F  .     Hcvever, 

there exibtb u :,untrlviai upper bound on the    L    function both for 

^   < t    and    p.   ^ t   .     This ijwer bound  Is  obtained by using  (5.1.', 

In place  of    F     In  the    L    function. 

Case  (11)     w =  C 
q 

Using the i pper t )und 

3.17)        B(t;C   ) =   | t/C 
q Ll-(i-q)       q       ,        t^Cq 

one can construct a  lever bound on    L    for all    t  . 

Description of the Tables and Some Illustrative Exaaples 

Table I.    Tnls  table gives the sample sizes necessary to estaollsn 

that the true unknevn mean    [x    of an  I7R dletributlon is at least 

\j.     at a nominal confidence level    P    .     The actual level attained 

is also tabulated. 

Illustration 1.     Suppose an experimenter vants to choose the sample 

♦ 0 
size corresponding  to    c=2,P    w   .75  ,   A ■ t/(i    ■ l.o   ,  the., th^s 

required    n    from Table 1 is erual to 5-     For this sampling plan tne 

actual probability level Is equal to   .7525- 

Table II.     This table gives the sample sizes necessary to establish 

th 
that the true  unknown    q        quantltle of an  UR distribution  is at 

0 ♦ 
least    r      at a nominal confidence level    P    .    The actual level 

q 

attained is also tabulated. 

Illustration 2.     Assuming an IFR distribution and given    c ■ 2   , 

-15- 
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p* • • 75 , ). • t/C
0 

• 1. 6 , q • .2 , ve tind trca 'l'able II tbat tbe q 

requ1re4 J11n1•" aM~Ple size is 13. For this &aii,Plin& plan the actual 

probability attaiuecl it the decision rule accepts is equal to . 7981. 

9Pllcation to Dn.l& SCl"!!niDI 

SUppoH a cSrua which 1B knCMl to be non-toxic is adllinistered 

to patients suft•lriD& tr<. a specified cancer to cleteraine its ettecti ve

DHa. 'l'ba cSrua will be considered ettective it, say 2~ ot the patients 

reapon4 to tr.t.ent after T veeu (T • 6, say). Tbe treatment will 

conti.Due t veeka ( t • 12, say) unless 1a0re tban c patients respond 

before thia tt.e--in which caae tbe drug will be declared ettective at 

tbe eD4 ot the t , veeka. X.t F ( t) clenote tbe probabill ty ot a 
C+.A. 

reapoue by tiM t and F(T) • p . Since ve do not want to discard 

a potent~ uaetul drug, ve aet 

c 

P(reJectiuc cSrua I p~ .20] • L (~)(r(t)]J(l - F(t)]n-J ~a • 
J..O 

lbr P(T) ~ .20 it and ~ it C .20 ~ T vbere C.20 is tbe 2oth 

t(t~ percent1l.e. u .. ..~ All IP1t- diat.ribution tiae; i.e. , 1 - r t) 

iD~iDI in t , tbeD thia proba. is identical vi th case ( 11) 

Ill.uatn.tion. We want to cJatemi.De the zw.ber ot patients to p.&t on 

tri&l to establish with 90 per cent confidence tbat, F(T) ~ .20; i.e., 

tbe reaponae rate atter T veeka is at leut 20 per cent. U ~ • 2 , 

* c • 3 , Q • .20 and P • .90 , we t1D4 tr~ 'l'able II tbat n • 17 

aD4 tbe true coatidence lnel is • 91. 

.. 
~ - --- . .:..~ ... -.,;·· . !:"~:.! .. 

\ • • •• • I • :. ' •' • ' -16-



Table  III.     This table gives the  seunple siiea ..t cs^r^ry to eetabllBh that 

the true    rJcr"-    r.        -uantile  of a  .TR dlatrlbutlüii Is at least    f 

♦ / o at a nominal  confidence J.evel    P    .    Here    > « t/t,    ^ 1  .    Also,  the 

actual confidence attained is tabulated. 

Approxijnations for Sample Sires 

The sample sizes necessary to establish a quantlle for the UR and 

DFR distributions can be approxinftted as follcvs. If 1 - (1 - q) Is 

small,   then 

y        * 
3.1Ö) -   ' Cfi*P 

L 1 - (1 ■      i! (1 - q)' 
+ 1 

where    y *    Is the    P      percentage point at a stsküdardlzed gamna 
* 

variable with shape parameter    r ■ c ♦ 1    or ore-half times the    P      per- 
p 

?entage point of a    x     with    (2c  + 2)    degrees of freedom.    This approxi' 

nation was  discussed by Gupta  (1962a) where tables of    y        p*    are also 

given. 

If p = 1 - q is close to  .5, then another approximation for n 

is 

( 
3.19)   n - I - 

2c <■ 1 + p^#)(l + >/1 - (2c ♦ l)2/(2c + 1 + pzp*)2)j 

 2irT75 J-i 

« 
where z ♦  is the P  percentage point of the N (0 , 1) random varia- 

ble.  For example, if q=.l,>-l,c»l,P -.75, then y^   • = 

2.D92b and from (3.18) , n - 2? .  The exact answer from Table II is 2?. 

As an example of the second approximation, let X«l,p"l-q«.5, 

•17- 



P    ■   «75   »   C  - 2  ,   then  the  approxima**1  ansv-r  frum  {5.±))   is   /' which 

coincides with the exact value. 
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